
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2006; 51:439–468
Published online 20 December 2005 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/�d.1140

A generic, mass conservative local grid re�nement technique
for lattice-Boltzmann schemes

M. Rohde1;2;∗;†, D. Kandhai1, J. J. Derksen1 and H. E. A. van den Akker1

1Kramers Laboratorium voor Fysische Technologie; Technische Universiteit Delft; Prins Bernhardlaan 6;
2628 BW Delft; The Netherlands

2Radiation; Radionuclides and Reactors Department; Technische Universiteit Delft; Mekelweg 15;
2629 JB Delft; The Netherlands

SUMMARY

A generic, mass conservative local grid re�nement technique for the lattice-Boltzmann method (LBM)
is proposed. As a volumetric description of the lattice-Boltzmann equation is applied, mass conservation
can be imposed by allowing the lattice-Boltzmann particles to move from coarse grid cells to �ne grid
cells and vice versa in the propagation step. In contrast to most existing techniques, no spatial and
temporal interpolation of particle densities is applied. Moreover, since the communication between the
coarse and the �ne grids is independent on the collision step, the method can be used for any LBM
scheme.
It was found that the method is second-order accurate in space for 2-D Poiseuille �ow and di�erent

grid setups. The method was also applied to the case of 2-D lid driven cavity �ow at Re=1000,
where half of the cavity was locally re�ned. It was found that the locations of the two lower vortices
could be captured accurately. Finally, a direct numerical simulation (DNS) of turbulent channel �ow
at Re�=360 was performed where the grid was locally re�ned near the walls of the channel. Good
�rst- and second-order turbulence statistics were obtained, showing the applicability of the local grid
re�nement technique for complex �ows. Copyright ? 2005 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Many systems in nature and engineering involving transport processes can be characterized
by a broad spectrum of length and time scales; the most notable example being turbulence.
The smallest scales (i.e. Kolmogorov scales) of a turbulent �ow are determined by the local
�ow conditions and may vary signi�cantly in size from position to position. In computational
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�uid dynamics (CFD), �ow inhomogeneity is e�ectively accounted for by adapting the grid
in accordance with the local �ow conditions.
In conventional CFD, based on, e.g. �nite-volume and �nite-di�erence methods, numerous

techniques for adapting the grid to the local �ow conditions (i.e. local grid re�nement)
were developed and investigated during the past decades. On the other hand, for LBM,
such developments were initiated only some years ago. These techniques can be subdivided
into several categories, such as ‘�nite-di�erence lattice-Boltzmann method (FDLBM)’ [1, 2],
‘�nite-volume LBM (FVLBM)’ [3–5], ‘interpolation supplemented LBM (ISLBM)’ [6, 7] and
so-called locally embedded uniform grid techniques [8–12].
In this paper, a generic, mass conservative technique in the category of locally embedded

uniform grids will be described. A number of benchmark cases (ranging from 2-D laminar
channel �ow to turbulent channel �ow) will be used to show that no interpolation and rescaling
of particle densities is needed to obtain accurate results. Since no rescaling of particle densities
is applied, the technique can be used for any collision operator.

1.1. Locally embedded uniform grids

The locally embedded uniform grid techniques di�er from other existing techniques in the
sense that the re�ned uniform grids and the main coarse grid live on di�erent space and
time scales. These scales are connected through the level of re�nement (i.e. �xc = n�xf
and �tc = n�tf , where n denotes the level of re�nement, the subscript c refers to the coarse,
and f to the �ne grid), so that the lattice velocities ci are equal for all grids. The consequence
is that one needs to perform less time steps on the coarse grid than on the �ne grid, because
also time is re�ned locally. It can be shown that the reduction in computational e�ort is
(Gc + nGf )=(n4Gc + nGf ), where G denotes the number of grid cells on a grid. Another
consequence is that the relaxation parameter of the LBGK scheme has to be adjusted, such
that the viscosities (in physical units) on both grids are equal; since �c = (1=n)�f , the relaxation
parameters on both grids are related by �c = (�f − 1

2 )=n+
1
2 . The velocities and gravitational

acceleration scale according to (in lattice-Boltzmann units!) uc = uf and gc = ngf . A typical
grid with its time and space discretization is shown in Figure 1.

∆x f , ∆ t f

∆xc , ∆ t c

P1 P2

Figure 1. A typical computational grid, consisting of locally embedded uniform grids.
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Both the collision and propagation step take place on the �ne and coarse grid, following the
standard LBM for uniform cubic grids. The question now arises what particle distributions ni
reside on the grid nodes shared by both grids. More speci�cally, what are the incoming particle
distributions travelling from one grid to the other grid? A lot of pioneering work in the �eld
of locally embedded uniform grids has been performed by Filippova and H�anel [8, 9]. They
adjusted the collision step on the shared grid nodes by correcting the non-equilibrium part of
the particle distribution nneqi for the di�erent time discretization and relaxation parameter on
both grids. Accurate results have been obtained for cases such as two-dimensional �ow around
an airfoil at Re=1:5× 106 [13]. Lin and Lai [10] considered the communication step between
both grids after the propagation step instead of the collision step. They assumed the particle
distributions on the shared grid nodes to be transferable between both grids, without any
rescaling of the non-equilibrium part of the particle distribution. Hence, ni(xc)= ni(xf ). This
assumption, however, is not entirely correct, because the non-equilibrium part nneqi depends
on the relaxation parameter (in the case of the LBGK scheme) and the time step,

nneqi ∼�t · �((ci · ∇)(ci · u)− c2s∇�u)
Without rescaling the non-equilibrium part, an error is introduced in the local components
of the stress tensor. Simulations show that without rescaling, indeed a signi�cant error is
introduced [11]. Dupuis and Chopard [11] therefore apply such a rescaling, but, in contrast
to Filippova and H�anel, after the propagation step. This results in a technique that resembles
the method of Filippova and H�anel, but is simpler to implement and contains no singularity
for �=1.

1.2. Drawbacks of existing techniques

Originally, the LBM scheme is a �nite-di�erence scheme. This implies that conservation of
mass cannot be easily imposed when particle distributions need to be interpolated (which might
be necessary for applying accurate boundary conditions or local grid re�nement techniques).
The same issue becomes relevant when locally embedded grids are considered. Filippova and
H�anel [8, 9], Lin and Lai [10] and Dupuis and Chopard [11] apply �rst- and second-order
interpolation in space and time for properly transferring particle densities from one grid to
the other and for keeping the overall accuracy of the simulation second order.
Another issue relates to the fact that most existing techniques use the rescaling of the

non-equilibrium distribution. A consequence of such a rescaling step is that these techniques
are restricted to a speci�c collision operator. Since a range of �ow problems require more
sophisticated lattice-Boltzmann schemes (such as the multiple relaxation time lattice Boltz-
mann model [14] and the scheme as proposed in References [15, 16]), a scheme-independent
grid re�nement technique would be preferable.

2. AN ALTERNATIVE SCHEME FOR LOCALLY EMBEDDED GRIDS

2.1. Methodology

One way to impose conservation of mass is by using a volumetric description of the trans-
port and behaviour of the lattice-Boltzmann particles (i.e. the lattice-Boltzmann equation).
An example of such a grid, with each embedded grid consisting of grid cells rather than grid
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A

B

Figure 2. A set of locally embedded grids, consisting of grid cells. A represents a coarse cell, B a �ne
cell. The level of re�nement reads n=2.

nodes, is shown in Figure 2. The volumetric information of the di�erent grids can now be
used to ensure mass conservation. In fact, we can use the rescaling of the non-equilibrium
distribution as described by Dupuis and Chopard [11], use second-order interpolation in time
and a mass-conservative second-order interpolation technique in space to obtain second-order
accuracy and mass conservation. In this section, however, a di�erent approach is proposed.
The idea of using the volumetric description of the grid for mass conservation is still applied,
but no interpolation technique or rescaling of the non-equilibrium distribution is applied.
The alternative method consists of several steps, which are described below and are

schematically shown in Figure 3. Only cells A and B in Figure 2 and one velocity direction
and its corresponding opposite direction (denoted by ↓ and ↑) are considered for clarity.
The steps of the method are as follows:
Step 1: Collision step on coarse(A) and �ne(B) grid cells. Perform the collision step and

apply a body force, if any, on the coarse and �ne grid cells. Note that the collision operator
�i and the body force are grid dependent. Formally,

ni(x; t∗)= ni(x; t) + �i(N) + tf ; i�(ci ·G)
where t∗ denotes the moment after the collision and the last term represents the addition of
momentum to the �uid due to the presence of a body force G.
Step 2: Homogeneous redistribution of particle densities from coarse to �ne grid cells.

Redistribute the mass distribution Ni(x; t∗), which is homogeneously distributed in a coarse
cell, into nD smaller cubic cells (D denotes the spatial dimension), following

(Ni(xp; t∗))f =
1
nD
(Ni(xc; t∗))c with

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p=1 : : : nD

xp = xc ±
(
1 + 2k
2n

)
�xc

with k=0 · · · n
2

− 1

(1)

where Ni=�Vni and �V is the volume of a grid cell. Note that, according to Figure 3, only
one layer of coarse grid cells needs to be redistributed. Equation (1) implies that the particle
densities in the smaller cubic cells are equal to the original particle density in the coarse
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A

B}
Step 1

Step 2 Step 3 Step 4a Step 4b Step 5

Figure 3. Schematic representation of our locally embedded grid re�nement technique. The cell marked
with ‘A’ represents a coarse grid cell, the cells marked with ‘B’ are �ne grid cells. The circles (•)
denote the centre of the cells in the coarse grid, the squares (�) the centre of the cells in the �ne
grid. The open arrow heads (∧ and ∨) correspond to particle densities originating from the �ne grid,
the closed arrow heads (N and H) to particle densities that originate from coarse grid cells. Particle
distributions after a propagation step are represented by arrows pointing towards the cell centre, particle

distributions after a collision step are denoted by arrows pointing from the cell centre.

cell, hence (ni)f = (ni)c. It is important to note that no spatial interpolation and no rescaling
of particle densities take place. This contrasts to the methods of Filippova and H�anel [8, 9]
and Dupuis and Chopard [11], where second-order interpolations in space are applied and
where the non-equilibrium distributions are rescaled when particle densities are interchanged
between grids of di�erent levels of re�nement.
Step 3: Propagation step on the coarse and �ne grid. Perform the propagation step on the

coarse and the �ne grid.‡ This step actually represents a communication step between both
grids. It should be stressed that particles originating from the coarse grid remain unchanged
and simply propagate to the �ne grid, though a collision operator corresponding to the coarse
grid was applied on these particles before. The numerical implications and the e�ect on the
simulation results will be discussed in more detail in the Section 3.
Step 4: Repeat steps 4a and 4b n− 1 times.
Step 4a: Collision step on the �ne grid. Apply the collision step on the �ne grid only.

Two issues should be mentioned here: (i) Particles that propagate from the �ne into the coarse
grid (i.e. cross the interface that separates the �ne and the coarse grid§) will not take part in
any collision step again. (ii) In most methods that relate to locally embedded uniform grids,
the particle densities on t̃= t̃0 + �t̃f , located on shared grid nodes such as nodes P1 and P2

‡i.e. on the �ne grid cells located on the �ne and coarse grid.
§From now on, the interface between the �ne grid and the coarse grid is denoted as the grid transition interface.
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in Figure 1, are obtained by interpolating the rescaled coarse distributions on t̃0 and t̃0 +�t̃c.
No temporal interpolation of particle densities is applied in the method presented here.

Step 4b: Propagation step on the coarse and �ne grid. Perform the propagation step on
both grids. This step is methodologically similar to step 3.
Step 5: Homogeneous redistribution of particle densities from �ne to coarse grid cells.

Sum the masses of the nD small cubic cells for all velocity directions ci pointing to wards the
coarse grid, resulting in the new incoming particle distributions for the coarse grid. Formally,

(Ni(x; t))c =
nD∑
p=1
(Ni(xp; t))f

or in terms of particle densities

(ni(x; t))c =
1
nD

nD∑
p=1
(ni(xp; t))f (2)

Similar to step 2, no rescaling of particle densities is applied here.

3. VALIDATIONS

With the help of several well-known benchmark cases, the method as described in the previous
section will be tested on numerical and physical consistency. These benchmark cases are 2-D
channel �ow, lid driven cavity �ow at Re=1000 and turbulent channel �ow at Re�=360.

3.1. 2-D laminar channel �ow

We start with one of the simplest benchmark cases, which is 2-D laminar channel �ow driven
by a constant body force. The direction of the body force (and thus the �ow) with respect to
the orientation of the grid transition interface will be varied as follows:

• The body force is parallel to the grid transition interface.
• The body force is normal to the grid transition interface.

Both cases will be studied in the subsequent sections.

3.1.1. Body force parallel to the grid transition interface. First we consider a channel with
a coarse grid in the top half of the channel and a �ne grid in the bottom part (see Figure 4).
The settings for the density �, the height of the channel H , the viscosity �, the body force

g, the maximum velocity at the centreline of the channel Umax and the location of the grid
transition interface zS can be found in Table I. In this case, the position of the grid transition
interface is at the centreline of the channel, hence the height (in physical units) of the both
grids is equal, i.e. H̃ =8�x̃f = 4�x̃c. The lattice-Boltzmann scheme used in the simulations is
the so-called D3Q19 scheme, which is a single relaxation time scheme [17] with the collision
operator:

�i(x; t)= − 1
�
(ni(x; t)− neqi (x; t))
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Figure 4. Grid setup for 2-D laminar �ow. The direction of the body force is
parallel along the grid transition.

Table I. Settings for a 2-D channel �ow simulation. The direction
of the body force is parallel along the grid transition.

In coarse lattice units In �ne lattice units

� (ls−3) 1 1
H (ls) 8 16
� (ls2:lt−1) 1

6
1
3

gx (ls:lt−2) 1
480

1
960

Umax (ls:lt−1) 0.1 0.1
zS (ls) 4 8

‘ls’ and ‘lt’ refer to the unit for length and time in lattice-Boltzmann
schemes, respectively.

The discretized particle velocities ci are de�ned as follows:

ci=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(0; 0; 0) for i=0

(± 1; 0; 0); (0; ± 1; 0); (0; 0; ± 1) for i=1 : : : 6

(0; ± 1; ± 1)
(± 1; 0; ± 1) for i=7 : : : 18

(± 1; ± 1; 0)
In the LBGK scheme used here, the equilibrium distribution neqi is equal to

neqi (x; t)= tp; i�(x; t)(1 + 3(ci · u) + 9
2(ci · u)2 − 3

2 u
2)

where tp; i= 1
3 for i=0; tp; i=

1
18 for i=1 : : : 6 and tp; i=

1
36 for i=7 : : : 18. The speed of sound

for this scheme is equal to cs=
√

1
3 (ls:lt

−1) and the pressure satis�es the equation of state

p=�c2s (ls
−1:lt−2). At the top and bottom walls, the no-slip boundary condition is realized

by using the halfway bounce-back method.
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Figure 5. (a) Axial velocity pro�le; and (b) error pro�les in a 2-D channel, according to the numerical
setup as shown in Figure 4 and Table I. ‘HBB’ refers to ‘halfway bounce-back’. The de�nitions, used
in the �gure, are: �ux;sim = ux;sim − ux;an ;�ux;ref =�ux;sim −�ux;HBB and ux;an = 4UmaxH−2z(L − z), the
latter being the analytical solution of 2-D channel �ow. The �ux;HBB refers to the error as found for
simulations performed on a uniform grid (�ne and coarse). Note the di�erent scales in panel (b).

The velocity pro�le ux;sim of the simulations is shown in Figure 5(a), together with the
analytical solution ux;an. In Figure 5(b), the numerical error �ux;sim is shown. This �gure clearly
shows that this numerical error fully originates from the halfway bounce-back method [18],
so that the error due to the grid re�nement technique, �ux;ref , is of the order of machine
precision. This result is also found when the grid transition interface is located at positions
di�erent from the centreline (not shown in the �gure). We therefore conclude that, in this
case, the grid re�nement technique does not introduce any signi�cant numerical error. A
detailed explanation for the absence of an error can be found in Reference [19]. Finally,
it is remarkable that the error pro�les contain a discontinuity at the grid transition interface,
since the transfer of numerical information among grid cells usually induce a more continuous
pro�le.

3.1.2. Body force normal to the grid transition. The second case is similar to the previous
one, except that the grid transition interface is normal to the direction of the body force
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Figure 6. Grid setup for 2-D laminar �ow. The direction of the body force is normal
to the grid transition interface.

Table II. Settings for a 2-D channel �ow simulation. The direc-
tion of the body force is normal to the grid transition interface.

In coarse lattice units In �ne lattice units

� (ls−3) 1 1
H (ls) 8 16
� (ls2:lt−1) 1

6
1
3

L (ls) 100 200
gx (ls:lt−2) 1

480
1
960

Umax (ls:lt−1) 0.1 0.1
xS (ls) 50 100

(see Figure 6). Consequently, the only gradient present in 2-D channel �ow, @ux=@z, is oriented
di�erently with respect to the grid setup. On top of that, since the grid is not homogeneous
in the x direction, an arti�cial gradient @ux=@x may be introduced. Especially close to both
grid transition interfaces at x=0 and xS (note that a periodic boundary is applied at x=0
and L), this arti�cial gradient may be present in the �ow. We therefore choose the length of
the channel L large enough, so that this arti�cial gradient becomes practically zero far away
from these grid transition interfaces. We then can compare the velocity pro�les both close to
and far away from the grid transition interface. The numerical settings of the simulation can
be found in Table II.
The results of the simulation are shown in Figures 7(a) and 8(a). We can see in Figure

7(a) that, in contrast to the previous test case, the velocities in the stream- and spanwise
directions show a staggered pro�le with small staggering amplitude. This clearly indicates a
numerical artifact of the re�nement technique, which can also be seen in the error pro�les in

Copyright ? 2005 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:439–468



448 M. ROHDE ET AL.

Figure 7. Axial velocity pro�les in a 2-D channel, according to the numerical setup as shown
in Figure 6 and Table II. The velocity pro�les for all x-positions are shown here: (a) without

post-processing; and (b) after post-processing.

Figure 8. Error pro�les with respect to the axial velocity in a 2-D channel, according to the numerical
setup as shown in Figure 6 and Table II. ‘HBB’ refers to ‘halfway bounce-back’. The error pro�les for

all x-positions are shown here: (a) without post-processing; and (b) after post-processing.

Figure 8(a). The staggered pro�les are also shown in Figure 9, where the velocities in the
streamwise direction are plotted as a function of x. It is found that the location of the maxima
and minima of the �uctuations is always the same on the coarse time scale (not shown in the
�gure). The latter �gure also indicates that the staggering only occurs on the �ne grid, for
the particle distribution on the coarse grid is always a time and space average of all incoming
particle distributions originating from the �ne grid (see Equation (2)).
Staggering is a common phenomenon found in lattice-Boltzmann simulations (see e.g.

References [20, 21]) and may be cured by applying an averaging step in time and=or space.
Figures 7(b) and 8(b) show that the staggered pro�les collapse when a simple post-processing
step is applied. This post-processing step, which is schematically shown in Figure 10, only
consists of averaging the �ne grid particle distributions in space to coarse grid particle
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Figure 9. Axial velocities in the streamwise direction along the length of the channel, according to
the numerical setup as shown in Figure 6 and Table II. The lines represent the original velocities
on the coarse grid (xc = 50 · · · 100) and the �ne grid (xc = 0 · · · 50), the symbols the velocities after a
post-processing step. The original velocities on the �ne grid are located on zc = 0:25; 0:75; 1:25; : : : ; 7:75,
the velocities on the coarse grid are located on zc = 0:5; 1:5; : : : ; 7:5. Units relate to the coarse grid.

Figure 10. Schematic representation of the post-processing step.

distributions. It should be noted here that the post-processing step is not performed as part of
the simulation, but is only applied to the �nal simulation data.¶

Figure 8(b) shows that the error in the velocity is of the same order as the error caused by
the halfway bounce-back method applied here. This suggests that the grid re�nement technique
is second-order accurate in space for this �ow problem. Detailed error analysis reveals that
this is indeed the case (data not shown here), in spite of the absence of rescaling, interpolation
of particle densities and the presence of a staggered solution on the �ne grid.

¶One can perform such a process as part of the simulation, however, it is found that the accuracy is reduced
drastically.
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Figure 11. Grid setup for the accelerated, uniform �ow �eld test cases.

3.2. Uniform �ow �eld accelerated by a body force

The previous section indicates that the grid re�nement technique may add non-physical e�ects
to the solution. In this section, we therefore analyse the grid re�nement technique in more
detail, with the aim of understanding these unphysical e�ects better. Two simple cases are
considered for this analysis, viz:

• a uniform velocity �eld U0 on t= t0, uniformly accelerated with a body force gx. The
body force (and thus the �ow) is parallel along the grid transition interface;

• a uniform velocity �eld W0 on t= t0, accelerated with a body force gz. The body force
is normal to the grid transition interface.

Both cases are analysed on a grid as shown in Figure 11.

3.2.1. Body force parallel to the grid transition interface. The velocities on z= z0, z1 and z2
can be derived analytically in the case of a D2Q9 scheme after one coarse time step (i.e. on
t0 + �tc), thereby following the steps of the method described in Section 2.1. We may start
by applying the equilibrium distribution on t= t0, since no velocity gradients exist in the �ow
(nneqi =0). In the case of a �ow parallel along the grid transition interface, the velocities and
densities are (in lattice units):

u(z0; t +�tc) =U0 + 13
6 (gx)f�tf − 5

108 (gx)f =�f · (�xf )2

u(z1; t +�tc) =U0 + 2(gx)f�tf + 1
27 (gx)f =�f · (�xf )2

u(z2; t +�tc) =U0 + 23
12 (gx)f�tf +

1
216 (gx)f =�f · (�xf )2

w(z0:::2; t +�tc) = 0

�(z0:::2; t +�tc) = �0

(3)

The velocities deviate from the expected velocity with an error �u(z; t0+�tc)= u(z; t0+�tc)−
(U0 + 2�tf (gx)f ). Equations (3) apparently show that this error is dependent on the viscosity
and the body force. Such a dependency is also found for the velocities in the subsequent time
steps, which are obtained by simulations (see Figure 12).
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Figure 12. Pro�les of the error in the velocity around the grid transition in the case of an accelerated
uniform �ow �eld. The negative z values represent the �ne grid, the positive values the coarse grid.
The viscosity amounts to �c = 1

6 (ls
2:lt), the body force to (gx)c = 10−3 (ls:lt2), and U0 = 0 (ls:lt−1).

Note that momentum is conserved, since
∑

k �V�u=4�V�0(U0 + 2(gx)f�tf ) and
∑

k �V
�w =0 (�V denotes the volume of a cell, which is always equal to 1 in lattice-units,
irrespective of the grid resolution).
It is also found that the average error over z is exactly equal to zero. This might explain

the absence of an error in the channel �ow case in Figure 5; error pro�les are present while
the channel �ow develops to wards the parabolic pro�le, but sum to zero by means of the
bounce-back rule at the wall (as also the errors are re�ected). If we take the error for a
speci�c z into consideration, we then �nd that the error in the velocity for each value of z
develops in time following

�u(z; t)= u(z; t)− (U0 + (t − t0)gx)=F(z; t; �;�x;�t)gx

which becomes approximately constant after a number of time steps (see Figure 13(a)).
Consequently, the relative error in the velocity for a speci�c z, i.e. �u(z; t)=(U0 + (t− t0)gx),
decreases asymptotically in time, as denoted in Figure 13(b).

3.2.2. Body force normal to the grid transition interface. The same analysis can be per-
formed for a �ow normal to the grid transition interface, though the analytical expressions for
the velocities after one single time step are more complex. The absolute error in the velocity
and the density after one coarse time step can be expressed as

�w(x; t +�tc) =
P1(g3z ; �;�t;�x)
P2(g3z ; �;�t;�x)

gz

��(x; t0 + �tc) =
P3(g2z ; �;�t;�x)
F(gz; �;�t;�x)

�0gz

�u(x; t0 + �tc) = 0

(4)
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Figure 13. Development of the absolute and relative error in the velocity in time in the case
of a uniform, accelerated �ow �eld. The absolute error is divided by the body force, show-
ing the linear relation between both quantities. All quantities are given in coarse lattice units:

(a) absolute error; and (b) relative error.
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Figure 14. Pro�les of the error in the velocity at the grid transition in the case of the accelerated
uniform �ow �eld. The negative z values represent the �ne grid, the positive values the coarse grid.
The post-processing step was applied to the velocities on the �ne grid. The viscosity amounts to

�c = 1
6 (ls

2:lt−1), the body force to (gz)c = 10−3 (ls:lt2), and W0 = 0 (ls:lt−1).

where Pi(gnz ; �; t;�x;�t) represents an nth-order polynomial and F(gz; �;�t;�x) a function,
both functions of the body force, viscosity, time step size and grid spacing. From Equations (4)
it follows that both velocity and density depend on viscosity and body force. Such errors are
also found for the subsequent time steps, however, staggered pro�les are obtained now. This
result was also found in Section 3.1, con�rming that a velocity normal to the grid transition
interface introduces a staggered solution.
After performing the post-processing step on the �ne grid, the error pro�les show roughly

a similar pattern as the previous test case in the sense that the error changes sign at the grid
transition interface (see Figure 14). It should be noted, however, that the transport of both
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Figure 15. Average relative error around the grid transition in the case of an
accelerated uniform �ow �eld. The viscosity amounts to �c = 1

6 (ls
2:lt−1), the body

force to (gz)c = 10−4 (ls:lt2), and W0 = 0 (ls:lt−1).

errors is di�erent; in Figure 12, the error seems to di�use into the domain, while in Figure 14,
the error shows to be of an advective nature.
In contrast to the previous case, the average relative error over each pro�le is not zero, but

small and approximately constant. This average relative error is determined by averaging the
error pro�les from zi= − (t− t0)=�t : : : (t− t0)=�t, denoting the range of n=2(t− t0)=�t grid
cells that are a�ected by the grid re�nement technique on instant t. This error reads

Ew(t)=
1
n

∑
zi

w(zi; t)− (W0 + (t − t0)gz)
W0 + (t − t0)gz

which is plotted versus time in Figure 15.
It is also found that momentum in the z direction is not a priori conserved . From the

analysis of the �rst coarse time step, we can derive that the momentum in the z direction
reads (in �ne lattice units)

∑
k
�V�w=4�0(W0 + 2gz�t) + �0

(
2
3
�x�tW0gz

�
− 1
2
�t3g2z
�x

+
1
3
�x�t2g2z

�

)

indicating an error with second- and third-order terms, which is also found for the subsequent
time steps. For a �nite computational domain, however, the error may sum to zero (with
machine precision), as shown in the case of a simulation of an accelerated, uniform �ow in
a computational domain with periodic boundaries (see Figure 16).

3.2.3. Conclusion. It is found that the grid re�nement technique introduces a staggered solu-
tion with small staggering amplitude on the �ne grid for velocities normal to the grid transition
interface. The staggering, however, disappears when a simple post-processing step is applied.
The presence of the staggering can be elucidated in a qualitative way; coarse grid particles

propagate into the �ne grid in step 3 (see Section 2.1), although a collision operator corre-
sponding to the coarse grid was applied on these particles before. In other words, we may
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Figure 16. Change of total z-momentum (denoted by
∑

domain �pz) in the case of the accelerated,
uniform �ow in a computational domain with periodic boundaries. The simulation is performed on a
grid of (Hz)c = 200 (ls), the body force applied is (gz)c = 10−3 (ls:lt−2) and the viscosity amounts to

�c = 1
6 (ls

2:lt−1). Half of the grid is coarse, the other half is twice as �ne.

say that these particles carry t0 +�tc information based on coarse time and length scales, but
are used for the �ne grid on the �ner time steps t0+�tf ; t0+2�tf ; : : : as well. A similar e�ect
occurs in the case of �ne grid particles propagating to the coarse grid, because the method
implies that �ne grid particles that enter the coarse grid do not collide anymore, but only
propagate.
One could argue that the errors can be avoided by rescaling the non-equilibrium dis-

tribution. We found, however, that such a rescaling did not remove the errors, but even
decreased the accuracy of the method to �rst order. This seems to be in contradiction to
the �ndings in most references (e.g. in References [4, 8, 9, 11, 12], where the necessity of a
rescaled non-equilibrium distribution has been shown for reaching second-order accuracy).
Indeed it is shown in the previous sections that our method introduces an error with respect
to the non-equilibrium distribution, since the numerical errors, and thus the velocities, depend
on the viscosity (which, in the physical sense, is not the case for a uniform �ow �eld).
The errors, however, are found to be small. We therefore think that the methodology itself
imposes the non-equilibrium distributions to be properly scaled. This issue, however, will be
investigated in a more formal way in the near future, thereby following the methodology of
Chen et al. [12].
A second reason why the average error over the total computational domain is found to

be very small or even zero (depending on the orientation of the velocity considered with
respect to the grid transition interface), could be the fact that numerical errors ultimately
average to very small errors for �ow problems with con�ned boundaries. Con�ned boundaries
in lattice-Boltzmann simulations are mostly imposed by techniques that actually reintroduce
particle distributions leaving the computational domain (i.e. bounce-back techniques, the free-
slip algorithms and periodic boundaries), thereby also re�ecting numerical errors. This prob-
ably explains why no numerical errors were observed in the case of 2-D channel �ow, with
velocities parallel to the grid transition interface (see Section 3.1).
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Figure 17. Grid setup for lid driven cavity �ow. The Re number is de�ned as Re=UL=�.

3.3. Two-dimensional, lid driven cavity �ow

The second test case is a lid driven cavity �ow. This benchmark case consists of a closed,
square, two-dimensional channel, with one side moving with a constant speed U (see
Figure 17).

3.3.1. Earlier work. This case has been thoroughly studied numerically by several authors,
see e.g. Reference [22] and references therein. Hou et al. [22] studied lid driven cavity �ow at
several Re numbers ranging from Re=100 to 104, thereby using lattice-Boltzmann simulations
on a uniform grid. The simulations focused, among others, on the positions of the vortices
present in the cavity. The results presented in Reference [22] agreed well with earlier �ndings
where other numerical techniques such as �nite-di�erence and �nite element methods were
applied. At Re=100, the centre of the primary vortex is located close to the upper right
corner of the cavity, but moves closer to the centre when the Re number is increased. Next
to the large, primary vortex, two other vortices are present in the lower left and lower right
corners. At about Re=2000, a fourth vortex starts to develop in the upper left corner. Lin and
Lai [10] used the lid driven cavity �ow at Re=1000 as a benchmark case for testing their
grid re�nement technique. They used several locally embedded grids around the two vortices
in the lower left and lower right corner and in the top left corner of the cavity, where the
velocity gradients are high. Their results agreed quite well with the results of Hou et al. [22]
and other authors.

3.3.2. Numerical setup. Because of the numerous publications on lid-driven cavity �ow, also
for lattice-Boltzmann simulations, we consider it as a good benchmark case to test our local
grid re�nement technique. We therefore perform a simulation at Re=1000, using the same
numerical setup as Hou et al., but with a locally re�ned grid covering the lower half of the
cavity (see Figure 17 and Table III).
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Table III. Numerical input variables for lid-driven cavity �ow at Re=1000.

In coarse lattice units In �ne lattice units

U (ls:lt−1) 0.1 0.1
� (ls2:lt−1) 8

625
16
625

L (ls) 128 256
Size coarse grid Hx ×Hy (ls2) 128× 64 —
Size �ne grid Hx ×Hy (ls2) — 256× 128

Figure 18. Streamline pattern in the case of a lid-driven cavity after post-processing for Re=1000,
following the numerical setup as described by Figure 17 and Table III.

This speci�c case is also studied by Lin and Lai [10] for their re�nement technique, although
they use a cavity of size Lf = 255 (ls) and a somewhat larger �ne grid of size 255× 137 (ls2).
The no-slip walls are imposed by the halfway-bounce-back method, and the velocity at the
top of the cavity is imposed by adding an additional amount of momentum (viz. mass) to the
re�ected particles which is proportional to the boundary velocity [20]. Note that there are two
singularities at the top corner points of the cavity; on the left and right walls, a zero-velocity
is imposed, but at the same time, a certain velocity U is imposed on the same node. Such
similarities cause numerical errors, but these errors appear to be small since a large grid is
used.

3.3.3. Results. The streamline pattern of the simulation is presented in Figure 18. The post-
processing step has been applied to eliminate the staggering (see Figure 19 for a detailed
view of the bottom right corner before and after the post-processing step).
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Figure 19. Vector �eld before and after the post-processing step of the �ow in the bottom right corner
of a lid driven cavity at Re=1000: (a) before post-processing; and (b) after post-processing.
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Figure 20. Velocity pro�les in the x and y directions at the horizontal and vertical centre-lines of the
cavity at Re=1000 (U 2RANS �nite-volume results taken from Reference [10]).

The velocity pro�les at the horizontal and vertical centre-lines of the cavity are shown
in Figure 20. The results from U 2RANS �nite-volume calculations [10] and Hou et al. [22]
are also presented in the �gure for comparison. It is found that the results of the present
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Table IV. Positions of the three vortices present in lid driven cavity �ow at
Re=1000, compared with simulations by several other authors. The position

is expressed in terms of x=L and y=L.

x=L y=L

Central vortex
Ghia et al. 0.5313 0.5625
Hou et al. 0.5333 0.5647
U 2RANS 0.5315 0.5669
Lin and Lai 0.5276 0.5669
Current study 0:5323± 0:0008 0:5663± 0:0008

Lower left vortex
Ghia et al. 0.0859 0.0781
Hou et al. 0.0902 0.0784
U 2RANS 0.0866 0.0748
Lin and Lai 0.0827 0.0787
Current study 0:0827± 0:0008 0:0766± 0:0008

Lower right vortex
Ghia et al. 0.8594 0.1094
Hou et al. 0.8667 0.1137
U 2RANS 0.8661 0.1102
Lin and Lai 0.8583 0.1142
Current study 0:8654± 0:0008 0:1128± 0:0008

study, the results of Hou et al. and the U 2RANS calculations agree very well. Small dis-
crepancies between our calculations and those of Hou et al. may occur due to the use of
di�erent boundary methods; Hou et al. used the bounce-back method instead of the halfway
bounce-back method for the no-slip walls, although the latter method is known to be more
accurate [18]. In addition, Hou et al. applied the equilibrium distribution for imposing a
velocity (U; 0; 0) at the top of the cavity, which is not entirely correct. Another reason for
the small di�erences might be the grid itself; Hou et al. used a uniform grid, consisting of
256× 256 (ls2) grid nodes, whereas in this study, the grid of the upper half of the cavity is
twice as coarse. Note that the coarse grid at the upper part of the cavity apparently is su�cient
to resolve the �ow accurately. Another important �nding is the fact that our grid re�nement
technique does not introduce any unphysical e�ect in v=U and u=U near the grid transition
interface.
We �nally compare our results as to the positions of the three vortices with the results

of Ghia et al. [23], Hou et al. [22], and Lin and Lai [10], i.e. the large central vortex and
the two smaller vortices at the lower right and left corner of the cavity. In the case of the
results of Lin and Lai, only their case b is taken into consideration, since case b refers to
roughly the same grid as in our simulation. The locations of the vortices are determined by
examining the stream function and the streamline pattern, and can be found in Table IV. The
accuracy of these locations is at least one order of magnitude smaller than the grid spacing,
thus �(x=L)≈ ± 1

1280 ≈ ± 0:0008. It is clear that the results from our simulations agree well
with the results of other simulations found in literature.
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3.3.4. Conclusion. We conclude that the results of the current study agree very well with
results obtained by other simulations found in literature. In spite of the post-processing step
required, the grid re�nement technique does not introduce signi�cant numerical errors. This
may imply that the solution on the �ne grid contains accurate information, though this in-
formation is present as a staggered solution. Such a result was also found in Section 3.1 for
2-D channel �ow normal to the grid transition interface. However, to guarantee that the grid
re�nement technique produces merely a staggered solution rather than time-dependent hydro-
dynamic �uctuations, a more severe test has to be performed. Such a test will be described
in the next section.

3.4. Turbulent channel �ow at Re�=360

The last benchmark case is turbulent channel �ow for a in the literature thoroughly studied
and well-documented Reynolds number. This three-dimensional �ow, which is bounded by
two parallel walls of in�nite size, is forced by a pressure gradient or body force in the �ow
direction. The Reynolds number, based on the distance between the walls Hz and the centreline
velocity Uc, should be roughly Rec¿3000, in order to go beyond the transition from laminar
to turbulent �ow. The turbulence of this �ow is mostly induced by the wall, where small
structures are initiated. As the distance to the walls increases, the structures become larger.
The small-scale structures near the wall signi�cantly a�ect the �ow in the entire channel

and must be resolved as accurately as possible. It is therefore necessary to use a �ne grid near
the wall. On the other hand, a coarser grid is su�cient near the centreline of the channel,
where the size of the structures is large and strong hydrodynamical gradients are absent.
It would therefore be a waste of computational e�ort to use a uniform, �ne grid for the entire
channel.

3.4.1. Earlier work. The �rst extensive direct numerical simulation (DNS) on turbulent chan-
nel �ow at Rec = 6600 was performed by Kim et al. [24]. This speci�c case, which can
also be de�ned in terms of the wall shear velocity Re�= u�Hz=�=360 with the wall shear
velocity being dependent on the shear stress �s at the wall via u� ≡ (�s=�)1=2, is still be-
ing used as reliable benchmark material. Kim et al. used a grid such that all scales could
be resolved without any sub-grid model; grid cells with a small height near the wall and
gradually increasing height closer to the centreline of the channel. They used a cosine func-
tion for the position of each cell as a function of the coordinate normal to the walls, i.e.
z+j ≡ zu�=�=180(1 − cos((j − 1)�=(N − 1))) (the ‘+’ superscript denotes a quantity in wall
units), where N =129 is the number of grid cells in the normal direction, z+ =0 is the
bottom of the channel and z+ =360 the top of the channel. This implies that the �rst grid
cell has a height equal to �z+ =180(1 − cos(�=128))≈ 0:05 and the two central grid cells
a height �z+ =180− 180(1− cos(63�=128))≈ 4:4. They also found that the grid size in the
stream- and spanwise directions can be �x+ ≈ 12(streamwise) and �y+ ≈ 7(spanwise), since
on average the size of the structures in these directions is much larger than in the normal
direction. Another important numerical issue is the size of the computational domain, which
is bounded by the no-slip boundary condition at the walls and periodic boundary conditions
for the stream- and spanwise directions. Since periodic boundary conditions are used, one
should take a su�ciently large domain, such that there is statistically hardly any correlation
between two points positioned at a distance equal to half the depth and length of the domain.
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Table V. Numerical settings for the turbulent channel �ow simulation with the proposed
grid re�nement technique.

In coarse lattice units In �ne lattice units

Size of the domain Hx ×Hy ×Hz (ls3) 128× 64× 64 256× 128× 128
Size of the �ne grid, bottom channel (ls3) — 256× 128× 14
Size of the �ne grid, top channel (ls3) — 256× 128× 14
Size of the coarse grid (ls3) 128× 64× 50 —
Viscosity � (ls2:lt−1) 1:185× 10−3 2:370× 10−3

Body force gx (ls:lt−2) 1:388× 10−6 6:940× 10−7

Initial global density �0 (ls−3) 1.0 1.0
Wall shear velocity u� (ls:lt−1) 6:667× 10−3 6:667× 10−3

Number of time steps simulation Nt;max (lt) 1 200 000 2 400 000

Kim et al. therefore used a domain of 192× 160× 190 grid cells, which corresponds to a size
expressed in wall-units of H+

x ×H+
y ×H+

z =2350× 1150× 360.
Concerning lattice-Boltzmann simulations of turbulent channel �ow, several papers of Amati

and co-workers can be found in literature [25–27]. In Reference [25], a large uniform grid of
432× 288× 144 (ls3) nodes was used at a Reynolds number Rec ≈ 4800. The lattice-Boltzmann
code ran on a computer con�guration containing 512 processors. It was found that the mean
streamwise velocity in the viscous sublayer and the logarithmic layer could be reproduced very
well with the LBM. In Reference [26], a �nite-volume grid re�nement technique (FVLBM)
was applied for several grid lay-outs. One of these simulations roughly resembled the case
studied by Kim et al. [24], although the grid setup was somewhat di�erent. Fair results
were obtained, although a low order interpolation scheme was used so that locality could
be maintained. Locality favours parallel computing performance, but decreases the accuracy.
In Reference [27], a turbulent channel �ow was calculated for Rec = 6600 on a uniform
grid consisting of 256× 128× 128 grid points. The size of this computational domain was
actually too small to capture all turbulent quantities statistically well, but was large enough
to obtain the lower-order quantities such as the mean streamwise velocity pro�le, the root-
mean-square velocity �uctuations in the x-, y- and z-directions and the Reynolds shear stress
(see Reference [28] for the so-called minimal channel hypothesis). For these quantities, good
results were reported in Reference [27].

3.4.2. Numerical setup. We now return to our own grid re�nement technique, implemented
for the turbulent channel �ow case at Rec = 6600. For comparison, we perform the same
simulations as described by Amati et al. [27], thereby making the central region of the
channel twice as coarse as their original grid. The mean streamwise velocity pro�le, the
velocity �uctuations and the Reynolds stresses are compared in order to study the e�ect of
the grid re�nement technique on the �nal results. We also compare our results with the results
of Kim et al. [24], but we emphasize that we do not intend to perform a perfect DNS; our
main interest is to investigate the performance of the re�nement technique.
The settings for the computation are shown in Table V and Figure 21. The grid consists

of three parts, i.e. a �ne grid attached to the bottom wall of the channel, a coarse grid in
the centre and a �ne grid attached to the top wall. The height of both �ne grids equals
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Figure 21. Schematic representation of the computational domain, its sizes, the grid setup and the
coordinate system, used for the turbulent channel �ow simulation as indicated in Table V.

14 �ne grid cells (the grid transition interface is at z+ ≈ 40 in wall units), so that the smallest
structures are covered by the �ne grids. The �ne grid cells have a size �z+ ≈ 2:8, hence
the �rst grid node is located at position z+ ≈ 1:4 since the halfway bounce-back method is
used for both no-slip walls.‖ For z+¿40, the grid cells have a size of �z+ ≈ 5:6, which is
slightly too large for resolving the scales near the grid transition interface. From the fact
that the mean streamwise velocity pro�le is logarithmic and the production and dissipation of
turbulent kinetic energy being approximately equal, one can derive that the local Kolmogorov
length scale in the logarithmic layer follows �ku�=�=(�z+)1=4 [29], with �≈ 0:4 representing
the Von Karman constant. This results in a normalized Kolmogorov length scale of �ku�=�≈ 2
for z+ =40, which is too small for the large grid cells to be resolved entirely (as a rule of a
thumb, a grid cell can be roughly twice as large as the Kolmogorov length scale). The lack of
resolution near the grid transition interface on the coarse grid may therefore cause deviations
from the data of Amati et al.
The grid re�nement technique reduces the total time, necessary for this simulation, by 73%

compared to the uniform grid calculations performed by Amati et al. [27]. The reduction of
required memory is 68%.
The parallel code is run on four cluster nodes, each containing two AMD Athlon 1800+

CPU’s and 1GB of memory. The parallel e�ciency is found to be higher than 95%. It takes
about 330 h (i.e. 2 weeks) for calculating a time span of t+ ≡N�tu�=Hz=20, hence the
total simulation (including the startup) takes 1650h, corresponding to 10 weeks. The minimal
memory required amounts to 19× (128× 64× 50 + 2× 256× 128× 14)× 4≈ 100 MB.
The startup of the turbulent channel �ow needs some extra attention. The �ow �eld is

initiated from zero velocity by developing a Poiseuille �ow with a centreline velocity of
Umax =0:1 (ls:lt

−1), a body force gx=8Umax�=H 2
z (ls:lt

−2) and preferably a high viscosity, so
that the parabolic pro�le develops quickly. Then, the �ow is disturbed on each grid node by
superimposing small random �uctuations on the local velocities u(x; t) of 10% of the original
velocity (this step is only performed during one time step on t=0 (lt)). The viscosity and

‖For real DNS, one should use at least three grid cells within the �rst wall unit.
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body force are then set to �=3:95× 10−4 (ls2:lt−1) and gx=1:93× 10−8 (ls:lt−2) respectively,
and are increased every t+ ≈ 5 for a time span of t+ =20, thereby keeping the Reynolds
number, Re� ≡ u�Hz=�=(gxH 3

z =(2�
2))1=2 = 360, constant. This procedure is necessary, since

applying a large body force and viscosity at once results in too large �uctuations in the
streamwise direction during the startup phase, being up to ± 100% of the local velocity. On
top of that, we use an alternative lattice-Boltzmann scheme [15, 16] which is more stable
than the 19-speed LBGK scheme. After the startup phase, the simulation is continued (with
the settings as indicated in Table V and the alternative lattice-Boltzmann scheme) for about
t+ ≈ 20, which means approximately 400 000 coarse time steps for this speci�c simulation.
The mean streamwise velocity 〈ux〉, the root-mean-square velocity �uctuations 〈u′

�u
′
�〉1=2 and the

Reynolds shear stress 〈u′
xu

′
z〉, all being a function of z, are monitored until a quasi-steady-state

situation has developed. Also the total shear on both walls, i.e. 2�=Hz(
∑

x;y ux(x; y; 1)=�z +∑
x;y ux(x; y; 127)=�z), is compared with the applied body force gx, which should sum to zero

in steady-state �ow.
After reaching a quasi-steady-state �ow, the simulation is run for a dimensionless timespan

of t+ =60. Similar to Amati et al., the 19 speed LBGK scheme is applied here. Samples are
taken every �t+ =0:5, so that an ensemble average can be calculated from Hx ×Hy × 60=0:5
≈ 4× 106 samples on the �ne grid and 106 samples on the coarse grid.
Finally, a simulation similar to the latter one is performed, however, the alternative lattice-

Boltzmann scheme of Somers [16] is applied now. This simulation may show the applicability
of our local grid re�nement technique for other lattice-Boltzmann schemes.

3.4.3. Results. A snapshot of the �ow in a cross-section of the channel is shown in
Figure 22. From this vector �eld, it is clear that at least no signi�cant unphysical behaviour
or discontinuities can be found near the grid transition interface.
The mean streamwise velocity can be found in Figure 23, where the pro�le is compared

with the results of Amati et al. [27] and the two models for the viscous sublayer and the
logarithmic layer. The DNS results of Kim et al. [24] are added to the �gure for completeness.
The �gure shows hardly any di�erence between the results for a uniform, �ne grid (Amati
et al.) and the results of our simulation on the locally re�ned grid. This indicates that the
grid re�nement technique does not signi�cantly in�uence the mean streamwise velocity pro�le.
On top of this, we have simulated the same channel on a uniform, but coarse grid, whereof
the results are also shown in Figure 23. These results, compared to those of the locally
re�ned grid, clearly show that the grid re�nement technique does produce more accurate
hydrodynamics on the �ner grid. This is not that obvious, since no interpolations in space
and time have been applied for the communication from the coarse to the �ne grid.
The root-mean-square velocity �uctuations are shown in Figure 24. This �gure shows

that our simulations agree fairly well with the results of Amati et al. The �uctuations in
the streamwise (ux) direction are almost similar, though we have slightly higher values in the
central region of the channel.
The �uctuations in the spanwise (uy) direction also agree fairly well with Amati et al.,

however, small dips are observed here near the transition from the coarse to the �ne grid at
2z=H ≈ 0:22. It is obvious that these dips are introduced by the grid re�nement technique. We
think that this unphysical e�ect might also be present for the streamwise �uctuations, since
both ux and uy velocities are parallel to the grid transition interface and, as we have seen in
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Figure 22. Snapshot of the �ow in a cross-section of a turbulent channel. The top �gure shows the
entire cross-section, the lower �gure the bottom left part. The line in the lower �gure represents the

transition interface between the �ne and the coarse grid.

Section 3.1, behave di�erent from the velocity normal to the grid transition interface. However,
such deviations cannot be observed in the streamwise pro�le, probably because such small
unphysical e�ects are obscured by the large gradients in the streamwise �uctuations pro�le.
The �uctuations in the normal (uz) direction need special attention here, because these

velocities are normal to the grid transition interface. Such velocities show a staggered pro�le,
as we have seen with previous test cases described in this article. Figure 25(a) shows normal
velocity pro�les uz versus z for di�erent (x; y) in the �ow at t+ =60, Figure 25(b) represents
the normal velocity versus time at one speci�c position on the �ne grid. The amplitude of this
staggering is signi�cant compared to the local velocity and the local root-mean-square velocity
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Figure 23. Dimensionless mean streamwise velocity u+ = 〈ux〉=u� versus the distance from the wall in
the case of turbulent channel �ow. The grid in the range of z+ =0–40 is twice as �ne as the grid in
the centre of the channel. The results of Amati et al. [27] and Kim et al. [24] are also shown for
comparison. The results of a uniform, coarse grid clearly show the e�ect of re�nement near the wall.

The dashed lines represent the models for the viscous sublayer and the logarithmic layer.
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Figure 24. Dimensionless root-mean-square velocity �uctuations 〈u′
�u′
�〉1=2=u� for all

directions versus the (dimensionless) distance to the wall. The results of Amati et al. [27]
and Kim et al. [24] are also shown for comparison.
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Figure 25. Normal velocities u+z versus z+ near the bottom wall for three di�erent positions (x; y) in
the �ow on t+ =60 (a) and u+z versus time at one speci�c position on the �ne grid (b). The re�ned

grid is located between z+ =0 and 40.

�uctuations. The in�uence of this staggering on the turbulence, however, turns out not to be of
great importance for the �rst- and second-order turbulence statistics. In the staggered solution,
uz �uctuates around the desired values with alternating minima and maxima, which change
position every time step on the �ne grid. The pro�le for the normal velocity �uctuations
exhibits somewhat smaller values near the grid transition interface, which may originate from
the grid re�nement technique or the lack of resolution in the logarithmic layer for z+¿40.
The Reynolds stress 〈u′

xu
′
z〉 is shown in Figure 26. It is clear that the simulation results

are in good agreement with the result of Amati et al. No signi�cant dips are found near the
transition between both grids, which is to be expected since the pro�les in Figure 24 neither
show such dips in the streamwise and normal directions. The total shear stress, which is the
sum of the Reynolds stress and the viscous stress, is also plotted in the �gure. Its pro�le
should be a straight line and follow the theoretical shear stress pro�le �t = − u2�(1 − 2z=Hz),
which is to a large extent the case in our simulations.
The simulations by means of the alternative lattice-Boltzmann scheme of Somers [16]

instead of the 19-speed LBGK scheme, show small deviations from the results presented
above. The largest deviation can be found in the mean streamwise velocity pro�le, amounting
to +3% in the centre part of the channel. The velocity �uctuations for all directions and the
Reynolds stress 〈u′

xu
′
z〉 show deviations less than 2%. These small deviations may be caused by:

(i) the combination of the lattice-Boltzmann scheme used and our grid re�nement technique,
as the velocity and density errors are scheme dependent [19]. (ii) the numerical di�erences
between both lattice-Boltzmann schemes. In the current work, however, this issue is not further
investigated.

3.4.4. Conclusion. We may conclude that even for a complex �ow such as turbulent chan-
nel �ow, the grid re�nement technique proves to be useful. Most hydrodynamical properties
studied here are captured quite well, though the technique appears to have some in�uence on
the results. Some deviations, however, might also originate from the lack of resolution near
the grid transition interface on the coarse grid, which results in a reduced turbulence intensity.
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Figure 26. Dimensionless Reynolds stress 〈u′
xu′
z〉=u2� versus the distance from the

wall. The results of Amati et al. [27] and Kim et al. [24] are also shown
for comparison, together with the total shear stress and the theoretical shear

stress (straight dotted line).

These deviations can be diminished by using embedded grids with more than two levels of
re�nement, however, we did not perform such a simulation in the present study.

4. CONCLUSIONS AND OUTLOOK

An alternative local grid re�nement technique is proposed for lattice-Boltzmann schemes. The
technique can be considered as a member of a class of methods that use locally embedded
uniform grids. These techniques use patches of re�ned, uniform grids, superimposed on the
main coarse grid. On top of that, time is also discretized such that �x=�t=1 on each grid.
In this way, the standard lattice-Boltzmann equation can be used on all grids, since the set
of lattice velocities ci (both the directions and the size) remains the same. Moreover, such
techniques diminish the computational e�ort e�ectively, because both time and space are
locally re�ned, which decreases the required computational time even more.
The proposed method is di�erent from other locally embedded uniform grid techniques in

the way particle distributions propagate from one grid to another. In most methods, particle
distributions are treated as densities residing on grid nodes, and are interpolated (in time
and space) and rescaled on the nodes shared by both grids subsequently. In the case of the
method described in this paper, the particles are considered as mass, propagating from coarse
grid cells to �ne grid cells and vice versa. In this way, mass is conserved in a natural way.
The method does not contain any interpolation or rescaling of particle distributions, and is
therefore simple to implement.
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It is shown that the method introduces errors that depend on the orientation of the �ow with
respect to the orientation of the grid transition interface. These errors depend on the viscosity,
applied body force, the grid spacing and the time step. Analysis of these errors, in the case
of a uniform �ow �eld, reveals that the errors are small. The errors are found to be largest
in the case of a �ow perpendicular to this interface, where a staggered solution is obtained
on the �ne grid. After a post-processing step (i.e. space averaging), however, the results turn
out to be accurate. We think that, although no rescaling of the non-equilibrium distribution
is performed, such a rescaling takes place by the methodology itself. These thoughts are
supported by that fact that, even for a complex, time-dependent �ow such as turbulent channel
�ow, good �rst- and second-order turbulence statistics are obtained, which only slightly di�er
from a lattice-Boltzmann simulation obtained on a �ne, uniform grid. Especially in the region
near the walls of this �ow, high velocity gradients can be found which cannot be resolved
accurately by a �rst-order accurate scheme (see e.g. Reference [26]). An extensive formal
description, however, is needed and will be derived in the near future.
In general, it can be concluded that the method proves to be a useful tool for di�erent

kinds of �ow problems where local grid re�nement is required. Besides the fact that no
spatial interpolation is needed and mass is conserved, the method proves to be very useful
when other lattice-Boltzmann schemes than the LBGK schemes have to be used, since no
rescaling of the non-equilibrium distribution is required.
It should be realized that the use of cubic grids is not desired in all �ow problems. In

the case of wall bounded turbulence, such as turbulent channel �ow, the resolution in the
stream- and spanwise directions can actually be much coarser than in the normal direction;
thus a stretched grid would be more appropriate here. However, numerous �ow problems
exist where the choice for locally embedded grids is most useful, such as the turbulent �ow
around a cylinder, a building or a revolving impeller in a mixing vessel. We �nally want to
point out that the method can easily be transformed into a lattice-Boltzmann scheme for mass
transport, thereby inheriting its advantage of being mass conservative.
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